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Abstract
The porphyrias are a group of mainly inherited metabolic conditions that result from partial deficiency of individual enzymes in

the haem biosynthesis pathway. Clinical presentation is either with acute neurovisceral attacks, skin photosensitivity or both,

and is due to overproduction of pathway intermediates. The primary diagnosis in the proband is based on biochemical testing

of appropriate samples, preferably during or soon after onset of symptoms. The role of genetic testing in the autosomal

dominant acute porphyrias (acute intermittent porphyria, hereditary coproporphyria and variegate porphyria) is to identify

presymptomatic carriers of the family specific pathogenic mutation so that they can be counselled on how to minimize

their risk of suffering an acute attack. At present the additional genetic factors that influence penetrance are not known, and

all patients are treated as equally at risk. Genetic testing in the erythropoietic porphyrias (erythropoietic protoporphyria,

congenital erythropoietic porphyria and X-linked dominant protoporphyria) is focused on predictive and preconceptual

counselling, prenatal testing and genotype–phenotype correlation. Recent advances in analytical technology have resulted

in increased sensitivity of mutation detection with success rates of greater than 90% for most of the genes. The ethical

and consent issues are discussed. Current research into genetic factors that affect penetrance is likely to lead to a more

refined approach to counselling for presymptomatic gene carriers.

Introduction

The inherited porphyrias are caused by mutations in the
genes that code for the enzymes of the haem biosynthetic
pathway or, in one case, by mutation of an interacting tran-
scriptional protein.1,2 They can be divided into two groups
on the basis of their clinical features (Table 1). The acute
porphyrias are characterized by episodic, life-threatening
neurovisceral attacks that are always accompanied by
increased urinary excretion of 5-aminolevulinate (ALA)
and, except in the very rare ALA-dehydratase deficiency por-
phyria (ADP), porphobilinogen (PBG) (Table 1). The non-
acute porphyrias are characterized by photosensitization of
the skin by porphyrins, the absence of acute attacks and
normal excretion of PBG and ALA at all times (Table 1).

Each porphyria results from overproduction of haem pre-
cursors secondary to partial deficiency or, in X-linked domi-
nant protoporphyria (XLDPP), increased activity of one of
the enzymes of haem biosynthesis (Figure 1; Table 1).

These result in specific patterns of accumulation and
excretion of haem precursors that define each disorder
(Table 1). Diagnosis is normally straightforward, and
requires only biochemical investigation, provided the
appropriate analytes are measured in the appropriate
samples while symptoms are present, or soon after.7,8

Indeed, since symptoms may be non-specific, porphyria
cannot be established as their cause unless haem precursor
concentrations are shown to be increased. Genetic testing
is rarely required to make a diagnosis of porphyria and,
by itself, may be misleading if a mutation is not found or
unclassified variants are identified. Genetic analysis does
not identify mutations in all unequivocally diagnosed
cases and therefore cannot be used to exclude a diagnosis
of porphyria. In addition, low clinical penetrance in the
autosomal dominant porphyrias means that identification
of a mutation does not necessarily indicate active porphyria.
However, DNA analysis is now the method of choice for
presymptomatic diagnosis, family studies and for predictive
counselling. This review summarizes current knowledge of
the molecular genetics of the porphyrias and describes the
use of genetic testing in these disorders.

This article was prepared at the invitation of the Clinical Sciences
Review Committee of the Association of Clinical Biochemistry.
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Gene structure and expression

The first genetic information relating to human haem
synthesis was the characterization of the complementary
DNA (cDNA) sequence for hydroxymethylbilane synthase
(HMBS).9 Subsequently, all the genes of the pathway have
been characterized and their chromosomal locations ident-
ified (Table 2).10 – 16

ALAS has both erythroid and non-erythroid genes17,18

with the next three genes of the haem biosynthetic pathway
(ALAD, HMBS, UROS) having dual promoters18 – 20

(Figure 2). This enables the genes in the liver and the ery-
throid cells to be regulated according to the organs differing
haem requirements. Most haem synthesis takes place in the
developing red cells in the bone marrow with about 15%
produced in the liver for the formation of haem-containing
enzymes.21 In the liver, most haem biosynthetic enzymes
are turned over rapidly enabling the liver to respond effec-
tively to changing metabolic requirements. ALAS1 is the

rate-limiting enzyme in the production of hepatic haem17

and is controlled by negative feedback regulation by the
intracellular haem pool. In erythroid cells the rate of
ALAS2 synthesis is regulated to permit a high level of
haem synthesis and is linked to the availability of iron22

and is not inhibited by haem.23

Autosomal dominant porphyrias

Four porphyrias are inherited in an autosomal dominant
pattern: acute intermittent porphyria (AIP), hereditary
coproporphyria (HCP), variegate porphyria (VP) and famil-
ial porphyria cutanea tarda (F-PCT). At the molecular level,
all show extensive allelic heterogeneity with most mutations
being restricted to one or a few families although founder
mutations have been identified in some countries, notably
those that underlie the high prevalence of AIP in
Sweden,24 VP in South Africa25 and F-PCT in Norway.26

Glycine 

ALA 

Succinyl CoA 

ALA synthase 

PBG 

Hydroxymethylbilane 

Uroporphyrinogen III 

Coproporphyrinogen III 

ADP 

AIP 

CEP 

PCT 

ALA dehydratase 

Hydroxymethylbilane 
synthase 

Uroporphyrinogen III 
synthase 

Uroporphyrinogen 
decarboxylase 

Protoporphyrin IX 

Haem 

VP 

EPP 

Protoporphyrinogen IXa 

Protoporphyrinogen 
oxidase 

Ferrochelatase 

Coproporphyrinogen 
oxidase HCP 

 

Mitochondrion Cytoplasm 
Enzymes 

Acute 
porphyrias 

Cutaneous 
porphyrias 

XLDPP 
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Figure 1 Haem biosynthetic pathway. Enzymes are shown in solid fill, acute porphyrias (striped background) ADP, 5-aminolevulinic acid dehydratase deficiency

porphyria; AIP acute intermittent porphyria; HCP, hereditary coproporphyria; VP, variegate porphyria. Cutaneous porphyrias (circles background): XLDPP,

X-linked dominant protoporphyria; CEP, congenital erythropoietic porphyia; PCT, porphyria cutanea tarda; EPP, erythropoietic protoporphyria. Clear background:

XLSA, X-linked sideroblastic anaemia

Table 2 Human genes encoding enzymes of haem biosynthesis

Gene symbol Chromosomal location No. of exons Genomic DNA (kb) Tissue expression

ALAS1 3p21.1 11 17 Ubiquitous

ALAS2 Xp11.21 11 22 Erythroid cells

ALAD 9q34 12 or 13 (1A 1B) 15 (UCSC genome browser) Ubiquitous and erythroid-specific mRNAs

HMBS 11q24.1–q24.2 15 10 Ubiquitous and erythroid-specific mRNAs and isoforms

UROS 10q25.2–q26.3 10 34 Ubiquitous and erythroid-specific mRNAs

UROD 1p34 10 3 Ubiquitous

CPOX 3q12 7 14 Ubiquitous

PPOX 1q21–23 13 5.5 Ubiquitous

FECH 18q21.3 11 45 Ubiquitous

ALAS, 5-aminolevulinic acid synthase; ALAD, 5-aminolevulinic acid dehydratase; HMBS, hydroxymethylbilane synthase; UROS, uroporphyrinogen synthase;

UROD, uroporphyrinogen decarboxylase; CPOX, coproporphyrinogen oxidase; PPOX, protoporphyrinogen oxidase; FECH, ferrochelatase
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Enzyme activities are reduced to around 50% of normal,
indicating near or complete haplodeficiency.27,28 All four
disorders show low clinical penetrance indicating that
environmental factors and, probably, genes at other loci
are important in determining their presentation. Family
studies in France1 and the UK suggest that about 10–20%
of affected individuals develop symptoms but figures as
high as 50% have been reported for AIP from Sweden29

and, when minor skin lesions are taken into account, 40%
for VP from South Africa.30,31 As might be predicted for a
heterogeneous haplodeficient disorder, no clear genotype–
phenotype correlation has yet been established in any autoso-
mal dominant porphyria though there are reports that some
mutations may be associated with high penetrance.29,31

There is evidence that mutations for all four disorders are
more common in western European populations than the
prevalence of the diseases would suggest. In France, one in
1675 blood donors carries an HMBS gene mutation.27

Consistent with this high gene frequency, rare homozygous
or compound heterozygous forms, so-called ‘homozygous’
variants, have been described for each autosomal dominant
porphyria.32–36 Also consistent with a high prevalence of
asymptomatic heterozygotes in the population are the high
frequency of sporadic presentation, with less than 50% of
patients having a family history of overt porphyria, unex-
plained by de novo mutation, and the rare occurrence of co-
inheritance of two porphyrias, so-called dual porphyria.37,38

Autosomal dominant acute porphyrias

General features
AIP, HCP and VP are characterized by the episodic occur-
rence of life-threatening acute neurovisceral attacks

(Table 1) which are identical in all three conditions. In VP
and HCP, bullous skin lesions are present during an acute
attack in 10–50% of patients or may be the only clinical
manifestation (Table 1).1 This is rare in HCP but, in the
UK, about 60% of patients with VP present only with skin
lesions, identical to those of PCT.39 Acute attacks are rare
before puberty and often provoked by identifiable precipi-
tants, notably certain drugs, endocrine factors and alcohol.
Their management and prevention has recently been
reviewed.1 Preventing acute attacks by advising patients to
avoid porphyrogenic drugs [European Porphyria
Network: www.porphyria-europe.org] and other potential
precipitants is an essential part of the management of
families with AIP, HCP or VP.

Molecular genetics
More than 342 mutations have been identified in the HMBS
gene in AIP, about 52 in the CPOX gene in HCP and more
than 150 in the PPOX gene in VP (Human Gene Mutation
Database: www.hgmd.org). Mutations are distributed
throughout the genes; most are point mutations but a few
large deletions have been detected in the HMBS and
CPOX genes.40 – 42 Mutations decrease enzyme activities in
all tissues with the important exception of about 3% of
AIP families (variant AIP) which have HMBS mutations
that alter the N-terminus of the ubiquitous isoform and
therefore do not impair activity in erythroid cells.43,44

Indications for molecular investigation
Index patient: The main indication for molecular investi-
gation of a patient with biochemically proven AIP, HCP or
VP is to identify a mutation as an essential preliminary to
molecular investigation of that patient’s family. As noted,

ATG
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1A 1B

2A:2B
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Ubiquitous

Erythroid

Ubiquitous

Erythroid
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HMBS gene
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Figure 2 5-Aminolevulinic acid dehydratase (ALAD), hydroxymethylbilane synthase (HMBS) and uroporphyrinogen synthase (UROS) genes are transcribed from

different promoters to produce ubiquitous and erythroid isoforms of the enzymes in these different tissues
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mutational analysis is not required to confirm the diagnosis
and is not useful for assessing prognosis. However muta-
tional analysis of an index patient may be indicated if clini-
cal features and/or biochemical findings suggest the
presence of a ‘homozygous’ or dual porphyria or are other-
wise atypical. All exons and their flanking regions should be
sequenced. Where no mutation is found sequencing should
be extended to include the 5 prime untranslated region
(50UTR) and if necessary dosage analysis to detect large
intragenic deletions/duplications. Sensitivities of mutation
detection in the HMBS, CPOX and PPOX genes are 97–
100%, where all these procedures have been followed
(Table 3).41

Family studies: Presymptomatic diagnosis of affected rela-
tives is an essential part of the management of families with
AIP, HCP or VP. Provided the family mutation can be ident-
ified, DNA analysis is now the method of choice, having
100% sensitivity for this purpose.1,47 It has greater diagnos-
tic accuracy than erythrocyte HMBS activity assay for AIP,
plasma fluorescence scanning for VP and faecal porphyrin
analysis for HCP and, unlike metabolite assays, is applicable
before puberty.48 In contrast to biochemical investigations,
it can exclude inheritance of the family mutation with a
high degree of certainty but, since the rest of the gene is
not sequenced there is a theoretical possibility of the
patient having a different mutation within the same gene.
Biochemical investigation can be used to decrease the
number of adult relatives that require DNA analysis, par-
ticularly in VP where plasma fluorescence scanning has
been reported to identify 76% of asymptomatic gene car-
riers.49 Faecal coproporphyrin isomer analysis may similarly
reduce the need for mutation testing in adult relatives of
HCP patients.50

Retrospective investigation of suspected acute porphyria:
Occasionally, patients who are currently asymptomatic
may require investigation to confirm or exclude a past
history of acute porphyria in themselves or in a relative
who is no longer available for investigation. Because symp-
toms may be followed by full biochemical remission,
normal metabolite measurements do not exclude the diag-
nosis, particularly in AIP, and enzyme measurements lack
sufficient diagnostic accuracy.51

In this situation, DNA analysis may identify a disease-
specific mutation or, for mutation-negative patients, in

combination with biochemical investigation, allow the
patient’s risk of being affected to be assessed.41 Our
current practice does not include analysis of all three
genes as this is not considered cost-effective.

Homozygous acute porphyrias
The number of gene carriers for all three autosomal domi-
nant acute porphyrias is sufficiently high for patients to
inherit either two acute porphyrias or mutations for the
same disease on each allele. The latter patients are either
homozygotes or compound heterozygotes and at least one
of the mutations must be associated with some residual
enzyme activity in order to sustain life. Homozygous
AIP is usually associated with severe, progressive central
and peripheral neurological deterioration after birth.33

Homozygous VP presents with bullous skin lesions in child-
hood, often associated with skeletal and neurological
defects.52,53 Homozygous HCP may present with acute neu-
rovisceral attacks in childhood54 while a variant, hardero-
porphyria, causes neonatal haemolytic anaemia and mild
photosensitivity.55 Patients are either heteroallelic or homo-
allelic for a missense mutation, p.Lys404Glu, in exon 6 of the
CPOX gene that impairs the sequential decarboxylation of
coproproporphyrinogen III resulting in increased faecal
excretion of the tricarboxylic intermediate, harderopor-
phyrin. Molecular genetic analysis is essential to confirm
the diagnosis in these rare conditions.

Porphyria cutanea tarda

General features
PCT is by far the commonest porphyria with over 100 new
cases per year in the UK. Patients usually present with skin
fragility and bullae on sun-exposed skin.56 Evidence of liver
dysfunction and some degree of iron overload is common.
Associated risk factors include high alcohol intake, hepatitis
C infection, haemachromatosis and use of oestrogens.57 – 60

Treatment is by depletion of iron stores, usually by repeated
phlebotomy, or with low-dose oral chloroquine. Both are
equally effective in all patients and produce prolonged
remission or cure.60 – 62 The disease results from reversible
inactivation of uroporphyrinogen decarboxlase (UROD) in
the liver; symptoms do not occur until activities are
below 50% of normal. Inactivation is reported to be due
to an inhibitor formed by iron-dependent oxidation of
uroporphyrinogen.63

Molecular genetics
Enzymatic and molecular investigations have revealed the
existence of two main types of PCT.56 Most patients have
the sporadic form (S-PCT) in which UROD deficiency is re-
stricted to the liver and the UROD gene is normal. About
25% of patients have the autosomal dominant form, familial
PCT (F-PCT) in which UROD activity is decreased in all
tissues. Over 108 disease-specific mutations have been iden-
tified in the UROD gene in F-PCT and its rare ‘homozygous’
variant, hepatoerythropoietic porphyria (HEP).64,65 Muta-
tions in F-PCT decrease UROD activity by 50%. An ad-
ditional decrease in hepatic UROD is required to produce
symptoms which is brought about by the inactivation

Table 3 Sensitivity of mutation detection

Porphyria Patients

Sensitivity of

mutation
detection

including gene
dosage (%)

95%

confidence
interval (%) Reference

AIP 260 98.1 95.6–99.2 41

HCP 31 96.9 84.3–99.5

VP 152 100 95.7–100

EPP 191 93.9 89.4–96.6 45

CEP See text 46

PCT See text

AIP, acute intermittent porphyria; HCP, hereditary coproporphyria;

VP, variegate porphyria; PCT, porphyria cutanea tarda; CEP, congenital

erythropoietic porphyria; EPP, erythropoietic protoporphyria

................................................................................................................................................
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mechanism described above which is common to both
types of PCT. The need for additional inactivation and the
frequent presence of the same risk factors in both types of
PCT explains, at least in part, the low clinical penetrance of
F-PCT. The sensitivity of mutation identification in F-PCT
probably exceeds 95% but is difficult to determine because
there is no method for unequivocally distinguishing F-PCT
from S-PCT which may itself rarely cluster in families.66

Indications for molecular investigation
Molecular analysis of the haemochromatosis gene should be
part of the initial investigation of all patients with PCT in
the UK where about 20% are homozygous for the
p.Cys282Tyr (C282Y) mutation.59,60 Homozygotes should
be treated by phlebotomy, not with chloroquine, and sub-
sequently monitored for re-accumulation of iron.

Mutational analysis of UROD is not needed for the diag-
nosis of PCT except in the rare instances when HEP is sus-
pected.65 There is currently debate about whether all
patients with PCT should be offered testing to identify
those with F-PCT.1,26,67 Mutational analysis of UROD has
greater diagnostic accuracy than measurement of erythro-
cyte UROD activity for this purpose.26,68 Differentiation of
F-PCT from S-PCT has little benefit for the individual
patient since the response to treatment and prognosis of
the two forms is similar.67 However, subsequent screening
of their families would allow asymptomatic affected rela-
tives to be counselled about the need to avoid risk factors.
As yet, there is no published evidence for the benefits of
managing families in this way. Some patients and relatives
may wish to know whether their disease is inherited.26 In
these, DNA analysis of UROD in the proband may be justi-
fied after appropriate genetic counselling. Current practice
in the UK is to undertake only biochemical analyses
except in exceptional circumstances.

Autosomal recessive porphyrias

Two rare porphyrias, ADP69 and congenital erythropoietic
porphyria (CEP) are inherited in an autosomal recessive
pattern and a third, erythropoietic protoporphyria (EPP),
is a recessive disorder which due to a prevalent hypo-
morphic allele behaves in a pseudodominant fashion.70

XLDPP, although an X-linked disorder, is included in this
section as it is convenient to consider it as a form of EPP.

Enzyme activities in the autosomal recessive porphyrias
are decreased in all tissues to around 30% of normal or
less. In contrast to the dominant porphyrias, all three dis-
orders are fully penetrant with only very rare exceptions71

and, in common with other autosomal recessive disorders,
some genotype–phenotype correlation is apparent.

ALA dehydratase deficiency porphyria

ADP is a very rare acute porphyria; only six families have
been reported worldwide.69 Patients are usually compound
heterozygotes for ALAD mutations. Up to 2% of the popu-
lation may be heterozygotes, who although asymptomatic,
may be more susceptible to toxicity from lead and other
chemicals that inhibit this enzyme.72

Congenital erythropoietic porphyria

General features
CEP is the most severe of the cutaneous porphyrias, affect-
ing about three per 10 million of the UK population. It
usually presents with red urine, severe blistering and hae-
molytic anaemia in infancy. Patients may develop photo-
mutilation and become transfusion-dependent. As with all
recessive conditions, the phenotype can vary depending
on residual enzyme function and more severe forms pre-
senting in utero with hydrops foetalis as well as mild, later
onset forms clinically resembling PCT are described.73 – 75

Treatment depends on photo-protection and other suppor-
tive measures.76,77 Allogeneic bone marrow transplantation
is curative but is usually reserved for the more severe
patients with haemolytic anaemia and should be under-
taken at a young age wherever possible.

Molecular genetics
Affected individuals are homozygous or compound hetero-
zygous for UROS mutations of which about 45 have been
reported (HGMD: www.hgmd.org). Rarely deficient
UROS activity is due to mutations in the gene encoding
the transcriptional regulator GATA1.2 There is some evi-
dence for genotype–phenotype correlations in CEP.77 For
example, the mutation Cys73Arg, especially in homo-
zygotes, may be associated with early onset of severe
disease and transfusion-dependent haemolytic anaemia.
Conversely, patients with the IVS9 þ 4delA mutation,
which is associated with significant residual activity,
present with non-progressive cutaneous manifestations in
mid-childhood or early teens. The correlation is weakened
by the striking impact of lifestyle and varying sunlight
exposure on the phenotypic expression and possibly due
to mutations in modifier genes such as ALAS2.78 In the
largest series of biochemically proven CEP patients, UROS
mutations were identified on 25 (74%) of 34 alleles; no
mutation being identified on either allele in three patients.46

The low sensitivity of mutation detection in this and other
case series of CEP is unexplained and may be due to as
yet unknown genes.

Indications for molecular investigation
Mutation analysis of the UROS gene, although not required
for diagnosis, may be useful for assessing prognosis, par-
ticularly in helping to decide whether allogeneic bone
marrow transplantation is indicated. Family members who
are heterozygotes for CEP mutations are asymptomatic
and have successfully acted as donors.79 Prenatal diagnosis
in families who already have an affected family member can
be helpful, but is dependent on identification of both
mutations. Where these are not identified, measurement of
uroporphyrin I in amniotic fluid may be informative.80

Erythropoietic protoporphyria

General features
EPP is a disorder in which accumulation of protoporphyrin
in erythrocytes, skin, liver and other tissues leads to lifelong,
acute painful photosensitivity and, in about 2% of patients,
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severe liver disease. Symptoms usually start in early child-
hood. Chronic skin lesions are minor and skin fragility is
absent.81,82 The most effective treatment is the prevention
of the photosensitive reaction by avoiding sunlight, skin
protection with clothing and sunscreen ointments and by
increasing skin pigmentation.83,84 Severe liver disease
usually requires transplantation.85,86

Molecular genetics
Excess accumulation of free protoporphyrin results from
partial deficiency of ferrochelatase (FECH) activity. In the
UK, most EPP patients are compound heterozygotes for a
hypomorphic IVS3-48C allele that produces a truncated
unstable mRNA, reducing activity by 20–30%,87 and a dele-
terious FECH mutation (Figures 3a and b) that abolishes or
markedly decreases enzyme activity.45 This combination
reduces overall FECH activity below a threshold of 35% of
normal at which symptoms occur.88 The population fre-
quency of the IVS3-48C allele varies, ranging from less
than 1% in West Africa to 45% in Japan,88 and correlates
with the prevalence of EPP and the frequency of parent to
offspring transmission. In the UK, where 13% of the popu-
lation carry the low expression allele,45 30–35% of unrelated
patients have an affected relative and EPP is present in more
than one generation in about 5% of families (Figure 3c).81

Patients from about 4% of families are homozygous or
compound heterozygous for deleterious mutations
(Figure 3d) and characteristically have residual FECH activi-
ties of around 10% of normal. The frequency of the

IVS3-48C allele in this group of patients does not differ sig-
nificantly from the general population.45

More than 130 FECH mutations have been identified in
EPP (Human Gene Mutation Database: http://www.
hgmd.org). Less than half the mutations are missense; the
rest are nonsense, frameshifts, large deletions or affect
RNA splicing.45 In the UK, allelic heterogeneity is less
than in other porphyrias, largely due to one mutation
being present in 24% of EPP families.45

In 2% of UK families, FECH activity is normal and a gain
of function mutation in ALAS2, the gene encoding the rate-
limiting enzyme of erythroid haem synthesis, results in
increased flux through the pathway. The resultant accumu-
lation of free and zinc-chelated protoporphyrin, which may
be due to reduced availability of iron and or zinc within the
mitochondrion, gives rise to a distinct protoporphyria,
named X-linked dominant protoporphyria (XLDPP).89

Interestingly, loss of function ALAS2 mutations cause X
linked sideroblastic anaemia (XLSA).90

Genotype:phenotype correlations
A molecular explanation has been sought for two unusual
phenotypes of EPP: severe liver disease and palmar kerato-
derma. The risk of liver disease is increased in the rare
patients who are homozygous or compound heterozygous
for deleterious mutations, even though they are clinically
indistinguishable from the more common form of EPP
with regard to severity of photosensitivity. Five of 21
(24%) reported patients with this molecular type of EPP
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had severe liver disease. However, the majority of patients
with severe liver disease come from the much larger
group of patients with one IVS3-48C allele. There is evi-
dence to suggest that missense mutations that retain some
residual activity carry a lower risk of liver disease than
mutations that abolish FECH activity.91,92 However,
mutations associated with liver disease are found more fre-
quently in patients without liver disease. Mutational analy-
sis currently has no role in predicting the risk of liver disease
in an individual patient except when it leads to identifi-
cation of deleterious mutations on both FECH alleles or an
ALAS2 mutation (see below). To date, all EPP patients
with palmar keratoderma have been homozygote/com-
pound heterozygotes for deleterious FECH mutations,
although interestingly they had lower total erythrocyte por-
phyrin concentrations than patients with a single mutation
and a low expression allele and none had protoporphyric
liver disease.93,94 XLDPP, which is clinically indistinguish-
able from EPP, has a higher risk of severe liver disease
than the common form of EPP in those patients so far
identified.89

Indications for molecular investigation
Patients with EPP: Mutational analysis of FECH is not
required to establish the diagnosis of FECH-deficient EPP,
except for presymptomatic diagnosis in infants from
affected families and in the rare patients, for example,
those with keratoderma, in whom erythrocyte protopor-
phyrin concentrations are only marginally increased.93

However, there are arguments for including it in the inves-
tigation of all new patients, mainly to identify patients with
two deleterious mutations who are at increased risk of liver
disease but also for subsequent genetic counselling (see
below). An additional benefit is the collection of clinical
and genetic information from sufficient numbers of patients
for detection of genotype–phenotype correlations that may
be clinically useful in the future. The sensitivity of detection
of FECH mutations in EPP is 94% (Table 3).45 In mutation-
negative patients, decreased lymphocyte FECH activity
and the presence of the IVS3-48C allele infer the presence
of a FECH mutation undetectable by current methods.

Mutational analysis of ALAS2 is essential to confirm the
diagnosis of XLDPP and is recommended for all EPP
patients where zinc protoporphyrin comprises 10% or
more of the total erythrocyte porphyrin. In addition, there
are very rare patients with acute photosensitivity, and
increased erythrocyte free and zinc-protoporphyrin but no
detectable ALAS2 mutations; the cause of their disease has
yet to be determined.45

Family studies: Screening all asymptomatic relatives for
FECH mutations is not needed for the management of all
families with EPP. However, mutation analysis is required
for an asymptomatic adult relative who requests predictive
counselling and requires prior genetic testing of the
proband. This has become increasingly important given
increased awareness of the pattern of inheritance of EPP
and the relatively high frequency of the low expression
polymorphism in the UK population.

In XLDPP, all males and most female heterozygotes have
photosensitivity. Family studies by testing for ALAS2

mutations are required to identify the few asymptomatic
female carriers.

Predictive counselling: It is common for patients with EPP
and their asymptomatic relatives to ask for an assessment
of the risk that their children will inherit EPP. For families
with a child with EPP, the risk of a subsequent child
having the disease is likely to be one in four, since the unaf-
fected parent is much more likely to be heterozygous than
homozygous for the IVS3-48C allele; DNA analysis is not
normally required. The risk that the first child of a parent,
who either has EPP or is an asymptomatic carrier of a
FECH mutation, will inherit the disease depends mainly
on whether the unaffected partner carries the IVS3-48C
allele (Figures 3a and b).95 If he or she is hetero-allelic for
the hypomorphic IVS3-48C allele, the risk is one in four;
increasing to one in two if the unaffected partner is homo-
zygous. If this allele is absent the risk relates to the carrier
frequency of FECH mutations in the general population,
which although not formally assessed, is likely to be less
than 1:1000. In addition, there may be other rare, as yet uni-
dentified, hypomorphic variants. Their existence is
suggested by the finding that about 1% of EPP patients
with one FECH mutation are IVS3-48T homozygotes.45

Acquired somatic mutations

A small number of patients have been described in whom
either EPP or CEP has developed in association with myelo-
dysplasia or myeloproliferative disorder.96,97 The myeloid
disorder usually precedes the onset of porphyria, patients
are aged 40 y or more and there is no family history of por-
phyria. Most of the EPP patients have an acquired full or
partial deletion of chromosome 18 which results in loss of
heterozygosity for FECH in a clone of haematopoietic
cells.96,98 The association of CEP with myelodysplasia
remains unexplained but may result from a similar
mechanism.97,99

Prenatal diagnosis in the porphyrias

Prenatal diagnosis is rarely indicated in the porphyrias. In
most, the clinical prognosis is not generally considered suffi-
ciently poor to warrant termination and specialist treatment
at birth, requiring prenatal planning, and therefore is rarely
required. In the autosomal dominant porphyrias, trans-
mission of a severe phenotype is unlikely; indeed, most
who inherit the genes for these conditions remain asympto-
matic throughout life. However, prenatal diagnosis by
DNA analysis of chorionic villous or amniotic cells may be
justified in the more severe, and phenotypically predictable,
autosomal recessive porphyrias and ‘homozygous’ variants
when the family already has a child in whom the pathogenic
mutations have been identified. Prenatal diagnosis by mol-
ecular analysis has been reported in CEP and HEP.100,101

Methods for mutation detection

Most mutations in the porphyria genes are found in the
regions that code for the protein that is the exons or in the
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areas flanking the exons causing defects in the RNA proces-
sing. It is these regions that are targeted for analysis in the
first instance. Analysis of the promoter region at the 50

end of the gene and analysis for the presence of large del-
etions may also be needed. Other parts of the intronic
sequence are not usually analysed.

Identification of a mutation in the proband

The regions of interest are initially amplified from genomic
DNA using polymerase chain reaction (PCR) to produce a
product that is then used for the investigation. Screening
methods may be used to identify parts of the gene that
contain variants, for example denaturing high-performance
liquid chromatography,102,103 high resolution melting104 or
denaturing gradient gel electrophoresis105,106 before sequen-
cing using dideoxy terminators. As the cost and speed of
sequencing improves, screening is becoming less widely
used. Direct sequencing of all the regions of interest is
now often the preferred option. Because a number of large
deletions encompassing one or more exons have been ident-
ified in the porphyrias,40 – 42,107 – 109 gene dosage analysis by
quantitative fluorescent PCR110 or multiple ligation depen-
dent analysis40 should always be carried out if a mutation
is not detected by sequencing of genomic DNA. Single
exon deletions must always be confirmed as variants
under primers or probes can mimic these. Confirmation of
deletions can be carried out by repeat analysis with different
primers or probes or the identification of the breakpoints
although the latter may be very laborious. Confirmation of
a duplication may be difficult as the size of the duplication
may be greater than that easily achieved by long range PCR.
This strategy is very similar to that used for a large number
of other genes, e.g. BRCA, PMS2, RB1, VHL, ATP7B (http://
www.ukgtn.nhs.uk/gtn).

When no mutation can be identified in a patient with bio-
chemically proven porphyria, RNA analysis using a fresh
blood sample may be worthwhile. A heterozygous exonic
polymorphism will become homozygous in cDNA, or
gene dosage111 analysis will show a 50% reduction in
signal, if there is loss of heterogeneity caused by nonsense
mediated decay due to a functional intronic mutation.

DNA methods for family screening

When a pathogenic mutation has been identified in a family,
analysis of samples from family members is straightfor-
ward. The most common method is to sequence the area
that contains the mutation although RFLP is used in some
centres.112 Those families with large deletions encompass-
ing primer sites will require dosage analysis or PCR across
the breakpoints.

Differentiating a mutation that is causative of porphyria
from a harmless sequence variant

As the amount of molecular genetic testing increases more
novel sequence variants are identified. Nonsense, frameshift
and consensus splice site changes are likely to be patho-
genic.113 However if the pathogenicity of a variant is

uncertain guidelines are available from the clinical molecu-
lar genetics society (http://www.cmgs.org) to assist in the
determination of the clinical significance of variants iden-
tified in routine testing. In brief when a sequence variant
is identified, disease specific databases are checked, when
available, for information regarding the variant. The
Human Gene Mutation Database (http://www.hgmd.cf.ac.
uk/ac/index.php) is commonly used although the access
to the most recent data is only available to subscribers.
Care needs to be taken that there is evidence of pathogen-
icity. In most cases the original publication describing the
variant will need to be checked. The most useful infor-
mation is that of functional assay studies which may be
available in scientific publications. Bioinformatic programs
are available, e.g. AlaMut (Interactive Biosoftware USA)
which provide genetic information that may help to inter-
pret pathogenic status. Further investigations may be
required such as family studies. If a variant does not track
with the disease in a family then it is likely to be non-
pathogenic. However segregation studies have to be used
with caution in porphyria families as many family
members who have a pathogenic mutation will be asympto-
matic. RNA studies may be needed to determine the effect
of a variant on the splicing of RNA transcripts.

Annual participation in a specific molecular external
quality assessment scheme such as the European
Molecular Genetics Quality Network (EMQN: Website;
www.emqn.org) is essential in order to improve the services
for the benefit of patients with porphyria. Without this
errors may be perpetuated with the risk of acute attacks
going unrecognized or unnecessary lifelong restrictions
being practiced both with a potential of litigation.

The European Porphyria Network (EPNET; www.
porphyria-europe.org) has encouraged communication
among the specialist porphyria laboratories. One outcome
of the close links that have developed between laboratories
is the exchange of information on many subjects including
pathogenicity data on specific variants. A central diagnostic
database with the participation of the wider porphyria com-
munity inputting novel mutations and their evidence for
pathogenicity would be a huge advantage for diagnosis of
the porphyrias ensuring that laboratories do not repeat the
same work and preventing misdiagnoses.

Ethical considerations

Consent

The regulations governing genetic testing vary in each
country. In September 2011 the Joint Committee on
Medical Genetics in the UK published the second edition
‘Consent and confidentiality in genetic practice’. The gui-
dance given in this report was that consent should be
obtained prior to a laboratory test with genetic implications
being undertaken. It also placed the onus for gaining
consent on the clinician requesting the genetic information;
so that the laboratory is not required to confirm or docu-
ment consent.

When a sample is submitted to a laboratory the Joint
Committee suggests that the laboratory can assume that
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consent has been obtained for testing, possible storage and
for the use of the sample and the information generated
from it to be shared with the members of the donor’s
family and their health professionals (if appropriate). As a
safeguard for the laboratory and to ensure that the patient’s
wishes are complied with, a customized consent form may
be used. One specifically designed for the porphyrias is
available on the Cardiff Porphyria Service website http://
www.cardiff-porphyria.org/ which the clinician may find
helpful and is very useful for the laboratory.

Testing of children

It is recommended that where genetic testing is primarily
predictive of an illness or impairment that testing should
be delayed until the young person can decide for them-
selves. However testing may occur when there are specific
reasons not to wait until the child is older (Report on the
genetic testing of children British Society for Human
Genetics 2010). In the acute porphyric disorders it is very
rare that acute attacks occur before puberty with only a
few documented cases48,114,115 in the world literature.
However in order to pre-empt this possibility children in
families with acute porphyria, should be offered testing
with appropriate consent from parent or guardian. This
enables advice on avoidance of precipitating factors to be
provided and ensures rapid diagnosis with prompt treat-
ment should an attack occur.

The clinical benefit of genetic diagnosis in EPP is unclear.
Presymptomatic diagnosis may be requested in response to
parental anxiety. However if a child has not developed
symptoms by the age of three years, genetic testing, which
is likely to be for carrier status, should be delayed until
the child is competent to make an informed decision.

Prenatal or postnatal genetic testing of a sibling in a
family with CEP should be carried out so that the child
can be protected from light exposure including operating
theatre lights during caesarean section and phototherapy
for neonatal jaundice.

Conclusions

In summary, the role of genetic testing in the management
of patients and their families is not always straight
forward and differs among the types of porphyria. In
complex cases the advice of a specialist laboratory should
be sought.
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