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Summary
The amyloidoses are protein-misfolding disorders associated with progressive organ dysfunction. Immunoglobulin
light chain is the most common, amyloid A the longest recognized, and transthyretin-associated amyloidosis
(ATTR) the most frequent inherited systemic form. Although ATTR, an autosomal-dominant disease, is associated
with at least 100 different transthyretin (TTR) mutations, the single amino-acid substitution of methionine for
valine at position 30 is the most common mutation. Each variant has a different organ involvement, although
clinical differences attributed to environmental and genetic factors exist within the same mutation. Peripheral
neuropathy and cardiomyopathy are broadly described, and insights into disease reveal that kidney impairment
and proteinuria are also clinical features. This review combines clinical and laboratory findings of renal
involvement from the main geographic regions of disease occurrence and for different mutations of TTR. Fifteen
nephropathic variants have been described, but the TTR V30M mutation is the best documented. Nephropathy
affects patients with late-onset neuropathy, low penetrance in the family, and cardiac dysrhythmias. Micro-
albuminuria can be the disorder’s first presentation, even before the onset of neuropathy. Amyloid renal deposits
commonly occur, even in the absence of urinary abnormalities. The experience with renal replacement therapy is
based on hemodialysis, which is associated with poor survival. Because TTR is synthesized mainly in the liver, liver
transplantation has been considered an acceptable treatment; simultaneous liver-kidney transplantation is rec-
ommended to avoid recurrence of nephropathy. In addition, the kidney-safety profile of new drugs in development
may soon be available.
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Introduction
Amyloidosis is caused by extracellular deposition of
misfolded proteins as insoluble amyloid fibrils that
progressively disrupt tissue structure and function.

The most common forms of systemic amyloidosis
are associated with plasma cell dyscrasias (AL and
AH amyloidosis), chronic inflammation (AA amyloid-
osis), dialysis (b2-microglobulin amyloidosis), age (senile
systemic amyloidosis), and inherited gene mutations.
Proteins that cause familial forms of amyloidosis are
transthyretin (TTR), apolipoprotein-AI, apolipoprotein-
AII, gelsolin, fibrinogen Aa-chain, lysozyme, and cys-
tatin C. All except the cystatin C clinically affect the
kidney. The recently described leukocyte chemotactic
factor 2 (LECT2), which has no evident familial trait,
is also included in the nephropathic forms of systemic
amyloidosis.

Most hereditary amyloidoses are due to TTR muta-
tions. Although kidney deposits were recognized in the
original description of the disease (1), a renal phenotype
of TTR amyloidosis (ATTR) has been overlooked. This
review discusses the effects of ATTR on the kidney, with
special attention to the most common mutation, V30M
(c.148G.A, p.Val50Met, applying the new nomencla-
ture of the Human Genome Variation Society). The in-
troduction of new therapies will also be reviewed.

Transthyretin
TTR is one of most abundant circulating proteins

belonging to a subset of 25 proteinswith a predisposition

to misfold. It is synthesized by the liver (90%), retina,
pancreas, and choroid plexus as a 55-kD tetramer with
four identical 127-residue b-sheet–rich subunits and a
20-residue signal peptide with no specific physiologic
properties (2,3). TTR mRNA has been found in kidney
cells (4). TTR binds to thyroxine and retinol-binding
protein in the blood and cerebrospinal fluid and trans-
ports vitamin A without the loss of retinol-binding pro-
tein molecules in the kidney (5).
The TTR gene is located on human chromosome 18

(18q11.2-q12.1) (6), and more than 100 different single-
or double-point mutations and a deletion are described.
Pathogenic mutations are associated with the fibrillar
conformation of proteins and, subsequently, amy-
loidosis. Amino acid substitutions result in confor-
mational changes in the protein that lead to weaker
subunit interactions between the tetramers. The dis-
sociation into monomers is the first step in the devel-
opment of amyloidosis. Modified soluble tetramers
exposing cryptic epitopes appear to circulate in pa-
tients, but the trigger leading to dissociation into mo-
nomeric and oligomeric intermediates is not completely
understood.
Fibrillar deposits are formed only in mid- to late

adulthood. This could be because the mechanisms that
promote amyloidogenesis become more active with
aging or the preventive factors become less effective
with increasing age. Nonmutated TTR also forms
deposits, suggesting that mutations are not the sole
determining factor in amyloid fibril formation and that
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wild-type (WT) TTR has an intrinsic amyloidogenic pro-
perty (7).
Deposition of WT-TTR results in senile systemic amyloid-

osis (SSA), whereas its variants or fragments are associated
with forms that are transmitted in an autosomal-dominant
manner. Some nonpathogenic gene mutations appeared to
provide a protective effect with a slower disease progression
(8). Because the liver is the main source of circulating TTR,
orthotopic liver transplantation (OLT) was proposed for
treatment of ATTR (9).

Epidemiology and Genetics
ATTR is the most common form of hereditary amyloid-

osis. This disease was described by Andrade in Portugal (1)
and was later reported in Sweden (10) and Japan (11). The
initial reports of ATTR emphasized peripheral neuropa-
thy, leading to the term familial amyloidotic polyneuropathy
(FAP); that condition affects 1/100,000 people, although
this number varies by country (12). In an endemic area
of Portugal, the prevalence of ATTR V30M is 1/1000,
which is similar to its prevalence in Sweden (13,14). The
mutations with predominant heart manifestations include
the ATTR I111M and the ATTR V122I, which are present
in 3.5% of the African-American population (15). Although
the TTR mutation is required for amyloidosis, carriers of
the same mutation present variable penetrance. This char-
acteristic suggests that genetic modifiers, epigenetic factors
(16), or environmental influence exist. Several candidate
genes have been hypothesized but none have been identified
(17). On the basis of the finding that penetrance is higher
when the disease is maternally inherited, it was recently
suggested that a mitochondrial polymorphism might par-
tially explain differences in penetrance (18). Studies on the
influence of environmental factors in kidney amyloidosis are
contradictory. Renal deposits in transgenic mice expressing
the human TTR gene were absent in specific pathogen-free
conditions (19) but persisted in other experimental evalua-
tions under the same environment (20).
There is a slight male predominance of ATTR V30M,

except in nonendemic areas of Japan where women are
rarely affected (21). Epidemiologic differences, shown in
Table 1, have a special importance in nephropathy (22).

Clinical Presentation
Ethnicity and the TTR variant affect organ involvement,

although differences exist between patients with the same
mutation and within the same family (Table 2).
The principal manifestation of most ATTR amyloidosis is

peripheral neuropathy with dysautonomia. In the era before
OLT, patients died on average 11 years after disease onset
(23). The age of onset ranges from 17 to 80 years (12). In
Portugal and Japan, disease caused by the ATTR V30M var-
iant usually develops between the third and fourth decades
of life. Complement factor C1Q polymorphisms may mod-
ulate the age of onset and explain genetic anticipation with
amyloid deposition at an earlier age in successive genera-
tions (24). In monozygotic twins from Spain, different ages
of onset and phenotypes, including dissimilar kidney in-
volvement, have been reported (25). Of note, homozygosity
was not described as conferring a worse prognosis of ne-
phropathy in Swedish (26) and Japanese (27) populations.

Non-neurologic features include involvement of the heart,
eye, gastrointestinal tract, and kidney. A small number of
ATTR V30M cases, especially late-onset cases, may present
with heart failure (28). Precocious anemia, unrelated to
renal manifestations, is conferred by low erythropoietin
levels (29,30). It was suggested that the distal nephron is
the major site of erythropoietin production in ATTR (31).

Renal Manifestations
Much of the literature on renal involvement in ATTR is

based on small series. The assessment of different muta-
tions is not homogeneous; some reports specify the clinical
manifestations, and others simply describe the presence of
renal amyloid deposits. The distribution of amyloid
within organs can be demonstrated using 123I conjugated
with serum amyloid P component, a glycoprotein present
in all amyloid deposits (32). Although scintigraphy with
123I serum amyloid P component can depict extensive amy-
loid deposits in organs in which they have not been suspec-
ted clinically, there is a poor correlation with the severity of
organ dysfunction. In addition, this modality is unavailable
in most centers (33).
The first study dedicated to renal involvement in ATTR

V30M was conducted in Sweden (10). Serum creatinine
was increased in 5 of the 26 patients examined, and uremia
contributed to death in 4 of them. Another study from
Sweden, which included 24 patients, showed that half
had renal insufficiency and proteinuria (34). Nephropathy
did not correlate with age, duration of disease, or severity
of neuropathy. In Japan, early manifestation of heavy pro-
teinuria was also identified (35). A Portuguese prospective
study (36) involving 22 asymptomatic TTR V30M gene
carriers and 32 patients with neuropathy showed that mi-
croalbuminuria appears within the third and fifth years of
disease and can precede the onset of neuropathy. After
microalbuminuria, overt nephropathy developed in half
of the patients, usually 2 years later. Renal failure gener-
ally occurred 5 years after microalbuminuria, and even
sooner in women. The average duration of neuropathy at

Table 1. Characteristics of transthyretin-associated
amyloidosis V30M with nephropathy

Epidemiology and
Genetics Findings

Origin Nonendemic areas
Family history Frequently absent
Gender predominance Female
Age of onset of
neuropathy

.40 yr confers 3.5-fold
increased risk for
nephropathy

Clinical anticipation
within the family

Frequently present

Familial aggregation of
nephropathy

Present especially in
siblings of ESRD
probands

Source: Lobato L, Beirão I, SilvaM et al: End-stage renal disease
and dialysis in hereditary amyloidosis TTR V30M: presentation,
survival and prognostic factors. Amyloid 11: 27–37, 2004.
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first dialysis was 10 years. In the pre-OLT era, a serial
study involving 403 Portuguese patients from 150 kin-
dreds showed that one third of the patients presented pro-
teinuria and 10% progressed to ESRD (22,37). Proximal
tubular syndromes were never assigned to ATTR V30M.
The ATTR variants with renal involvement are detailed

in Table 2. Proteinuria was not reported in SSA (WT-TTR)
or TTR-associated cardiomyopathy.

Renal Pathology
In transgenic mice, WT and variant TTR are present in

the kidney in fibrillar and nonfibrillar aggregates (38). In
FAP, the deposition of TTR in cell culture in the form of
small toxic nonfibrillar aggregates may occur before amy-
loid formation (39), suggesting that prefibrillar oligomers
can cause cell death. Mice with multiple copies of the WT
human TTR gene showed nonfibrillar, noncongophilic anti-
human TTR-positive deposits in a smooth pattern along the
glomerular and tubular basement membranes. Older ani-
mals developed dense congophilic amyloid deposits in the
glomeruli and focal deposits in the interstitium. Of note, in
elderly Swedish patients with SSA (WT-TTR), postmortem
analysis revealed minimal congophilic material in the renal

cortex, although, as previously mentioned, SSA is not asso-
ciated with proteinuria (40). Some authors associate weak
Congo red staining of the fibrils with delayed disease onset
and associate a strong affinity to Congo red with early pre-
sentation of the disease (41). In the kidney, staining charac-
teristics of amyloid deposits were not described as being
different in cases of early- and late-onset neuropathy.
A crucial matter in ATTR nephropathy is recognizing the

presence and distribution of renal amyloid deposits. Four
studies systematically evaluated the renal histopathology
in ATTR V30M. Of those, three were concerned with 14
patients of Portuguese origin each and the other with 13
Japanese cases.
In one report, in which half the patients studied had

normoalbuminuria, amyloid was found in all cases (42). In
another report, which involved only 4 patients with pro-
teinuria, 13 of the 14 patients had amyloid deposits (36). A
third study demonstrated the presence of deposits in all pa-
tients, even in the 9 in whom proteinuria was absent (43).
Finally, in the Japanese cohort, there was evidence of amyloid
in 12 cases; proteinuria was verified in 5 of these cases (44).
Patients with albuminuria had a more extensive amyloid

involvement than those without clinical renal disease. The
medulla, basement membrane of distal tubules, loops of

Table 2. TTR variants with kidney involvement

TTR Variant
DNA

Nucleotide
Nomenclature

Phenotype Kidney Geographic Focus Reference

Val30Met (p.Val50Met) c.148G.A PN, AN, eye,
kidney

Proteinuria,
CRF, amyloid
deposits,
123I-SAP

Portugal, Japan,
Sweden,
USA, Mallorca,
Cyprus

63

Val30Ala (p.Val50Ala) c.149T.C Heart, AN, PN,
kidney

Amyloid
deposits

USA, Germany,
China

64

Phe33Cys (p.Phe53Cys) c.158T.G CTS, heart, eye,
kidney

Amyloid
deposits

USA 65

Phe33Ile (p.Phe53Ile) c.157T.A PN, AN, eye,
kidney

Amyloid
deposits

Poland 66

Gly47Glu (p.Gly67Glu) c.200G.A Heart, PN, AN,
kidney

CRF, amyloid
deposits,
123I-SAP

Turkey, USA,
Germany

67

Ser52Pro (p.Ser72Pro) c.214T.C PN, AN, heart,
kidney

CRF, amyloid
deposits

UK, Portugal 68

Gly53Glu (p.Gly73Glu) c.218G.A Heart, kidney CRF Sweden, Basque 69
Ile73Val (p.Ile93Val) c.277A.G PN, AN, kidney CRF Bangladesh 70
Ser77Tyr (p.Ser97Tyr) c.290C.A Heart, kidney, PN CRF USA, France,

Germany
71

Tyr78Phe (p.Tyr98Phe) c.293A.T PN, CTS, skin,
heart

CRF France, Italy 72

His88Arg (p.His108Arg) c.323A.G PN, heart, kidney CRF Sweden 69
Glu92Lys (p.Gln112Lys) c.334G.A Heart, kidney Amyloid

deposits
Japan 73

Val94Ala (p.Val114Ala) c.341T.C Heart, PN, AN,
kidney

Amyloid
deposits

Germany, USA 74

Ser112Ile (p.Ser132Ile) c.395G.T PN, heart, kidney CRF Italy 75
Asn124Ser (p.Asn154Ser) c.371A.G Kidney, heart Proteinuria,

amyloid
deposits

Italy 76

PN, peripheral neuropathy; AN, autonomic neuropathy; 123I-SAP, kidney deposits in scintigraphy with 123I-labeled serum amyloid
P component; USA, United States of America; CTS, carpal tunnel syndrome; eye, vitreous opacities; CRF, chronic renal failure.
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Figure 1. | Light microscopy findings in transthyretin-associated amyloidosis (ATTR) showing that amyloid deposition can be found
in glomeruli, vasculature, and tubulointerstitium. (A) Massive deposits in the glomerulus, ATTR V30M-amyloidosis, antitransthyretin
(TTR) fixation (immunoperoxidase technique; original magnification, 3400). (B) Deposits in the arteriole at the vascular pole–sparing me-
sangial areas, ATTR V30M-amyloidosis (Congo red; original magnification, 3400). (C) Amyloid in a blood vessel in conjunction with glo-
merular deposits, ATTR V30M-amyloidosis (Congo red–stained material under polarized light leads to apple-green birefringence; original
fixation, 3200). (D) Heavy amyloid infiltration of a blood vessel in ATTR V30M-amyloidosis (Congo red–stained material under polarized
light; original fixation, 3400). (E) Congo red positivity in the medullary interstitium, an early lesion in ATTR V30M-amyloidosis (original
magnification, 3100). (F) Anti-TTR fixation in the tubular basement membrane, ATTR S52P-amyloidosis (immunoperoxidase technique;
original magnification, 31000).
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Henle, and interstitium are typically filled with amyloid,
even in the early stages of the disease. Proximal tubules
positively react with anti-TTR antibody inside the cells,
which can be sustained by internalization of TTR by megalin
(45,46).
Renal dysfunction and the degree of proteinuria are

correlated with heavy amyloid deposition in the glomeruli,
arterioles, and medium vessels, but not with deposition in
medullary tissues (42). Renal deposition does not parallel
that of myelinated nerve fiber loss in the sural nerve, sug-
gesting that evolution and severity of nephropathy are not
correlated with the degree of neuropathy (21,44,47).
Amyloid was found predominantly in vessels and tubular

basement membrane in ATTR S52P. Detailed pathologic
descriptions of other variants are not available.
The first case of de novoATTR in a renal graft was observed

in an asymptomatic gene carrier for TTR V30M 13 years after
transplantation (Lobato L, unpublished data). In this case,
primary GN led to ESRD. Figure 1 shows patterns of amy-
loid deposition in ATTR amyloidosis.

Treatment of ESRD
To date, only one published study has evaluated ATTR

patients undergoing long-term dialysis (48). This report
included 62 patients with ATTR V30M who initiated di-
alysis at a mean age of 52 years. The main indications for
dialysis were fluid overload and metabolic acidosis. Average
survival after initiation of hemodialysis was 21 months, with
septicemia being the leading cause of death. Decubitus ul-
cers, followed by catheter sepsis and pneumonia, were the
major sources of infections; untreatable hypotension and ca-
chexia were additional causes of death. Symptomatic intra-
dialytic hypotension was present in more than half of all
patients and predominated in patients with native arterio-
venous fistula thrombosis.
In patients who did not survive beyond the first year of

dialysis, the absence of a pacemaker represented a two-fold
increased risk for death. This observation is probably related
to reduced heart rate variability in the face of the combination
of amyloidosis with uremia (49). As previously described,
when the use of a pacemaker is advisable in patients with
amyloidosis, the general recommendations must be fol-
lowed; however, the threshold for implanting these devices
is usually very low, given that other coexisting factors (au-
tonomic neuropathy and hypoalbuminemia) exacerbate epi-
sodes of low cardiac output (50).
Gastrointestinal disturbances, malnutrition, and physical

disability compromise self-peritoneal dialysis care, which
requires assisted treatment. Peritoneal dialysis in ATTR is
probably a residual treatment, and no sustained experience
is reported.
The suitability of isolated kidney transplantation is com-

promised once constant production of the amyloidogenic
precursor protein by the liver is maintained. In contrast to
other types of hereditary nephropathic amyloidosis, in
ATTR this approach was not attempted (51).

Treatment of ATTR
Currently, there is no specific therapy to remove exist-

ing amyloid deposits of any origin. Because the liver is the

organ primarily responsible for the production of circulat-
ing precursor amyloidogenic protein in ATTR, OLT is per-
formed as a potential curative treatment to eliminate the
mutant TTR from plasma (52). In the first descriptions of
this treatment, OLT was used to modify neuropathy pro-
gression (53). OLT outcomes are not always favorable, and
even successful treatments are controversial in terms of
nephropathy progression. Scintigraphy with 123I serum
amyloid P component showed mobilization of visceral am-
yloid, namely in the kidney, although mobilization of re-
nal deposits by histology has never been proven (54).
Support for de novo amyloid deposition was demonstrated
by the type of fibrils extracted from the kidney before OLT
(55). The fibrils did not contain obvious WT-TTR; how-
ever, after OLT, WT-TTR was evident, in a process similar
to that in the heart, although in a less substantial amount.
The analysis of fibrils extracted from myocardium tissue
after OLT revealed a greatly increased ratio of WT to var-
iant TTR, suggesting that pre-existing amyloid fibrils can
induce the formation of rapidly progressive deposits (56).
This unique vulnerability of heart tissue for continued de-
position of WT-TTR is not understood (57).
During the first year after OLT, renal function significantly

declined in Swedish patients, with stabilization thereafter
(58). Portuguese studies demonstrated that proteinuria may
be augmented, occur de novo, or remit. Long-term dialysis
was implemented 7 years after OLT, although a substantial
gain in survival was possible (59). In one patient, histologic
assessment revealed more extensive deposits and interstitial
nephritis.
Therefore, in the presence of progressive renal insuffi-

ciency or proteinuria, a kidney biopsy provides information
that is useful for adjusting immunosuppressive therapy and
determining whether heavy amyloid deposits are the main
cause of ESRD. Japanese researchers recommended renal
biopsy to determine the contraindications for liver trans-
plantation (44). In a French study of eight patients who
underwent a second renal biopsy 2 years after transplan-
tation, no significant changes in deposits or toxicity due to
calcineurin inhibitors were detected (43).
Simultaneous liver-kidney transplantation represents a

therapy for ESRD and avoids recurrence of nephropathy.
The Familial World Transplant Registry reports 32 such
transplantations in patients with ATTR V30M and 1 in a
patient with Val94Ala; in addition, a patient with Ser77Tyr
underwent both liver-kidney transplantation and heart
transplantation. In our center, six patients (mean duration
of neuropathy, 8 years) had liver-kidney transplantation
(60). After 84 months proteinuria had not recurred, but no
histologic evaluation was done.
The use of FAP livers as allografts for other patients, also

known as domino transplantation, has raised concerns
about the risk for de novo disease (61). In our center, in-
terstitial amyloidosis in the kidney was also demonstrated
8 years after a domino procedure (Vizcaíno R, unpublished
data).
New strategies have been developed to treat FAP despite

the scarcity of organs and doubts concerning long-term
results (62). Several trials, some already completed and
others recruiting participants, are evaluating or will eval-
uate new drugs (Table 3). A decision tree for ATTR amy-
loidosis is presented in Figure 2.
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Table 3. Treatment options for transthyretin-associated amyloidosis, classic therapy, and novel agents

Proposed Treatment Action Applicability Reference

Liver transplantation (OLT) Eliminate source of genetically
variant protein

Clinical use 9

OLT + kidney transplant Same as for OLT + therapy for ESRD Clinical use 60
OLT + kidney transplant +
heart transplant

Same as for OLT + therapy for
ESRD and severe heart failure

Clinical use 77

Diflunisal Binds to TTR via a T4-binding site
stabilizing TTR tetramer

Clinical trial 78
250 mg twice day or
500 mg once day, oral

Diclofenac, flufenamic acid Same as for diflunisal Preclinical 79
In vitro study

Trivalent chromium (Cr3+) Facilitates binding of T4,
(presumably) stabilizing TTR
tetramer

Preclinical 80
Ex vivo human clinical

Fx-1006A (tafamidis
meglumine)

Prevents misfolding of the protein
by stabilization of TTR tetramer

Clinical use 81
20 mg once day, oral

Cyclodextrin Reduces amyloid deposits by
decreasing conformational
change of TTR

Preclinical 82
In vivo transgenic mouse
study

Doxycycline + TUDCA Removes TTR toxic aggregates and
disrupts TTR fibril

Clinical trial 83
Doxycycline, 200 mg once
day, + TUDCA, 750 mg
once day, oral

bis-D-proline compound +
anti-SAP antibodies

Disaggregates amyloid deposits
through binding to high affinity to
SAP; triggers its rapid clearance by
the liver and triggers phagocytic
clearance mechanisms by potent,
complement-dependent,
macrophage-derived giant-cell
reaction

Pre-clinical 84
In vivo transgenic mouse
study

Carvedilol Reduces amyloid deposits mediated
by antioxidant effect

Preclinical 85
In vivo transgenic mouse
study

Epigallocatechin-3-gallate Disaggregates amyloid deposits and
decreases nonfibrillar TTR
deposition

Preclinical 86
In vivo transgenic mouse
study

Monomers of T119M Exchanges subunits to form highly
stable heterotetramers that are less
amyloidogenic

Preclinical 87
In vitro study

Single-stranded
oligonucleotides

Repairs genes (conversion of TTR
gene)

Preclinical 88
In vivo transgenic mouse
study

Anti-sense oligonucleotides Suppresses TTR mRNA Levels Preclinical 89
In vivo transgenic mouse
study

TTR small interfering
RNA (siRNA)

Inhibits TTR expression 90

ALN-TTR01: first-generation
lipid nanoparticle

Clinical trial

ALN-TTR02: second-
generation lipid
nanoparticle

Single endovenous dose

ALN-TTRsc: subcutaneous Clinical trial
Single endovenous dose,
.10- fold enhanced
potency compared
with ALN-TTR01

Preclinical
In vitro study

OLT, orthotopic liver transplantation; TTR, transthyretin; T4, thyroxine; TUDCA, tauroursodeoxycholic acid; SAP, serum amyloid
P component.
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Final Remarks
In ATTR, the occurrence and onset of nephropathy vary

according to the mutation. The possibility of old asymp-
tomatic gene carriers suggests that ATTR nephropathy
may be present, regardless of its absence in family history.
It is important to suspect ATTR in patients presenting with
proteinuria, progressive renal failure, weight loss, periph-
eral neuropathy, and cardiac dysrhythmias.
Urinary biomarkers specific for tubular and interstitial

pathologic abnormalities are needed for early detection and
timely treatment. Until now, trials did not clarify whether
kidney disease is an exclusion criterion for a drug or an

option for a particular one. New therapies will highlight
important issues for nephrologists and groups devoted to
amyloidosis.
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Varzim and Vila do Conde (north of Portugal). Am J Med Genet
60: 512–521, 1995

14. SousaA,AnderssonR,DruggeU,HolmgrenG, SandgrenO: Familial
amyloidotic polyneuropathy in Sweden: Geographical distribution,
age of onset, and prevalence.Hum Hered 43: 288–294, 1993

15. Jacobson DR, Pastore RD, Yaghoubian R, Kane I, Gallo G, Buck
FS, Buxbaum JN: Variant-sequence transthyretin (isoleucine 122)
in late-onset cardiac amyloidosis in black Americans. N Engl J
Med 336: 466–473, 1997

16. Olsson M, Norgren N, Obayashi K, Plante-Bordeneuve V, Suhr
OB,Cederquist K, Jonasson J: A possible role formiRNA silencing
in disease phenotype variation in Swedish transthyretin V30M
carriers. BMC Med Genet 11: 130, 2010

17. Soares ML, Coelho T, Sousa A, Batalov S, Conceição I, Sales-Luı́s
ML, RitchieMD,Williams SM,Nievergelt CM, SchorkNJ, Saraiva
MJ, Buxbaum JN: Susceptibility andmodifier genes in Portuguese
transthyretin V30M amyloid polyneuropathy: Complexity in a
single-gene disease. Hum Mol Genet 14: 543–553, 2005

18. Bonaı̈ti B, Olsson M, Hellman U, Suhr O, Bonaı̈ti-Pellié C,
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Deposition of transthyretin in early stages of familial amyloidotic
polyneuropathy: Evidence for toxicity of nonfibrillar aggregates.
Am J Pathol 159: 1993–2000, 2001

40. Westermark P, Bergström J, Solomon A, Murphy C, Sletten K:
Transthyretin-derived senile systemic amyloidosis: Clinicopath-
ologic and structural considerations. Amyloid 10[Suppl 1]: 48–
54, 2003

41. Ihse E, Ybo A, Suhr O, Lindqvist P, Backman C, Westermark P:
Amyloid fibril composition is related to the phenotype of
hereditary transthyretin V30M amyloidosis. J Pathol 216: 253–
261, 2008

42. Lobato L, Beirão I, Guimarães SM, Droz D, Guimarães S,
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